Comparison of inorganic ion exchange materials for removing cesium, strontium, and transuranic elements from K-basin water

Autor: J.R. Bontha, G.N. Brown, K.J. Carson, R.J. Elovich, J.R. DesChane
Rok vydání: 1997
Předmět:
DOI: 10.2172/552793
Popis: The work presented in this report was conducted by the Pacific Northwest National Laboratory (PNNL) under the Efficient Separations and Crosscutting Program (ESP), Office of Science and Technology, U.S. Department of Energy (DOE). The objective of this work was to investigate radionuclide uptake by several newly produced ion exchange materials under actual waste conditions, and to compare the performance of those materials with that of commercially available ion exchangers. The equilibrium uptake data presented in this report are useful for identifying potential materials that are capable of removing cesium and strontium from 105-KE Basin water. The data show the relative selectivities of the ion exchange materials under similar operating conditions. Additional flow studies are needed to predict material capacities and to develop complete ion exchange process flow sheets. The materials investigated in this study include commercially available ion exchangers such as IONSIV{reg_sign} IE-911 (manufactured by UOP), clinoptilolite (a naturally occurring zeolite), and materials produced on an experimental basis by AlliedSignal (biotites and nonatitanates), 3M (hexacyanoferrates), Selion Technologies, Inc. (hexacyanoferrates and titanates), and Texas A&M University (pharmacosiderites, biotites, and nonatitanates). In all, the performance of 14 ion exchange materials was evaluated at two solution-to-exchanger mass ratios (i.e., 10{sup 4} and 10{sup 5}) using actual 105-KE Basin water. Evaluation consisted of determining cesium and strontium batch distribution coefficients, loading, and decontamination factors. Actual 105-KE Basin water was obtained from a sample collected during the sludge dissolution work conducted by PNNL in FY 1996. This sample was taken from the bottom of the basin and contained significantly higher concentrations of the radioactive constituents than do samples taken from the top of the basin.
Databáze: OpenAIRE