Molecular-level understanding of biological energy coupling and transduction: Response to 'Chemiosmotic misunderstandings'

Autor: Sunil Nath
Rok vydání: 2021
Předmět:
Zdroj: Biophysical Chemistry. 268:106496
ISSN: 0301-4622
DOI: 10.1016/j.bpc.2020.106496
Popis: In a recent paper entitled "Chemiosmotic misunderstandings", it is claimed that "enough shortcomings in Mitchell's chemiosmotic theory have not been found and that a novel paradigm that offers at least as much explanatory power as chemiosmosis is not ready." This view is refuted by a wealth of molecular-level experimental data and strong new theoretical and computational evidence. It is shown that the chemiosmotic theory was beset with a large number of major shortcomings ever since the time when it was first proposed in the 1960s. These multiple shortcomings and flaws of chemiosmosis were repeatedly pointed out in incisive critiques by biochemical authorities of the late 20th century. All the shortcomings and flaws have been shown to be rectified by a quantitative, unified molecular-level theory that leads to a deeper and far more accurate understanding of biological energy coupling and ATP synthesis. The new theory is shown to be consistent with pioneering X-ray and cryo-EM structures and validated by state-of-the-art single-molecule techniques. Several new biochemical experimental tests are proposed and constructive ways for providing a revitalizing conceptual background and theory for integration of the available experimental information are suggested.
Databáze: OpenAIRE