Experimental and numerical investigations of dynamic strain ageing behaviour in solid solution treated Inconel 718 superalloy
Autor: | Hai Chi, Run-Hua Song, Zhongnan Bi, Hailong Qin, Dong-Feng Li, Ji Zhang, Esteban P. Busso |
---|---|
Rok vydání: | 2020 |
Předmět: |
010302 applied physics
Materials science General Engineering Titanium alloy 02 engineering and technology Plasticity Strain rate 021001 nanoscience & nanotechnology 01 natural sciences Computer Science Applications Stress (mechanics) Superalloy Computational Theory and Mathematics 0103 physical sciences Hardening (metallurgy) Composite material 0210 nano-technology Inconel Dynamic strain aging Software |
Zdroj: | Engineering Computations. 38:19-35 |
ISSN: | 0264-4401 |
DOI: | 10.1108/ec-01-2020-0006 |
Popis: | Purpose The purpose of this paper is to systematically investigate the dynamic strain aging (DSA) effect in solid solution treated IN718 at different temperatures through experiments and simulations to gain an understanding of the inelastic deformation mechanisms. Design/methodology/approach In the present work, uniaxial tensile tests have been carried out in conjunction with finite element (FE) simulations to investigate the behaviour of the solid solution treated Inconel 718 superalloy at different temperatures and strain rates. Dynamic strain aging (DSA) effects, which manifested during the tests in the form of a negative strain rate sensitivity and stress serrations, are investigated. The most significant DSA effect occurs at 500°C and at a strain rate of 10–4 s-1. In a newly proposed rate-dependent constitutive formulation, the DSA model, proposed by McCormick, Kubin and Estrin, was introduced into slip-assisted solute hardening, and an activation energy-dependent exponential flow rule was adopted. Findings The observed negative strain rate sensitivity and stress serrations are well predicted by a 3 D FE. The FE results indicate that the equivalent plastic strain rate distribution in the specimen gauge length is as highly inhomogeneous as in the other materials exhibiting DSA effects such as aluminium and titanium alloy. During inelastic deformation, propagating high strain rate bands can be closely correlated to the stress serrations. Originality/value For the DSA effect in solid solution treated IN718, the existing researching mainly focuses on the mechanical properties experiment and microstructure observation. In this study, a constitutive formulation, combined with the DSA model, has been proposed, and the mechanical behaviors, including the DSA effect, have been well predicted by a finite element model. |
Databáze: | OpenAIRE |
Externí odkaz: |