Low rank interpolation of boundary spline curves

Autor: Dominik Mokriš, Bert Jüttler
Rok vydání: 2017
Předmět:
Zdroj: Computer Aided Geometric Design. 55:48-68
ISSN: 0167-8396
DOI: 10.1016/j.cagd.2017.03.012
Popis: The coefficients of a tensor-product spline surface in R d with m × n control points form a tensor of order 3 and dimension ( m , n , d ) . Motivated by applications in isogeometric analysis we analyze the rank of this tensor. In particular, we propose a new construction for low rank tensor-product spline surfaces from given boundary curves. While the results of this construction are generally not affinely invariant, we propose a simple standardization procedure that guarantees affine invariance for d = 2 . In addition we provide a detailed comparison with existing constructions of spline surfaces from boundary data.
Databáze: OpenAIRE