Popis: |
The basic issues of gustatory neural coding are revisited. Questions addressed and conclusions drawn are: (1) what is the physical dimension across which gustatory neurons are sensitive, and upon which taste perceptions are based? The dimension that unites the various taste qualities is not physical, but physiological: a dimension of well-being, bounded by toxins at one extreme and nutrients at the other. (2) How broadly tuned are taste cells across the dimension? There are instances of specificity, but most mammalian taste cells respond to a range of qualities. (3) Are there basic taste qualities? Sweet, salty, sour, and bitter are widely accepted as basic tastes. Umami and starch tastes are considered basic by some. (4) Is taste topographically organized? There is some degree of physical separation among neurons most responsive to different taste qualities, but this does not appear to be sufficient precision to act as a meaningful coding mechanism. (5) Are there gustatory neuron types? Neurons, separated into categories according to their response profiles, respond as members of their category to the challenges of conditioned aversions and preferences, sodium deprivation, hyperglycemia, and receptor blockade, while cells from other categories react differently. This indicates the existence of functionally distinct types of taste cells. (6) Is the quality signal coded within the activity of the single most appropriate category of neurons, or is it carried by the pattern of response across neuronal categories? Both the breadth of responsiveness and the logical ambiguity of the signal in any one category of neurons argue that the taste message is carried by a pattern of activity across gustatory neuron types. |