A note on estimating the conditional expectation under censoring and association: strong uniform consistency

Autor: Nassira Menni, Abdelkader Tatachak
Rok vydání: 2016
Předmět:
Zdroj: Statistical Papers. 59:1009-1030
ISSN: 1613-9798
0932-5026
DOI: 10.1007/s00362-016-0801-8
Popis: Let $$\left\{ (X_{i},Y_{i}), i \ge 1 \right\} $$ be a strictly stationary sequence of associated random vectors distributed as (X, Y). This note deals with kernel estimation of the regression function $$r(x)=\mathbb {E}[Y|X=x]$$ in the presence of randomly right censored data caused by another variable C. For this model we establish a strong uniform consistency rate of the proposed estimator, say $$r_{n}(x)$$ . Simulations are drawn to illustrate the results and to show how the estimator behaves for moderate sample sizes.
Databáze: OpenAIRE