A note on estimating the conditional expectation under censoring and association: strong uniform consistency
Autor: | Nassira Menni, Abdelkader Tatachak |
---|---|
Rok vydání: | 2016 |
Předmět: | |
Zdroj: | Statistical Papers. 59:1009-1030 |
ISSN: | 1613-9798 0932-5026 |
DOI: | 10.1007/s00362-016-0801-8 |
Popis: | Let $$\left\{ (X_{i},Y_{i}), i \ge 1 \right\} $$ be a strictly stationary sequence of associated random vectors distributed as (X, Y). This note deals with kernel estimation of the regression function $$r(x)=\mathbb {E}[Y|X=x]$$ in the presence of randomly right censored data caused by another variable C. For this model we establish a strong uniform consistency rate of the proposed estimator, say $$r_{n}(x)$$ . Simulations are drawn to illustrate the results and to show how the estimator behaves for moderate sample sizes. |
Databáze: | OpenAIRE |
Externí odkaz: |