Popis: |
This article describes a set function that maps a set of Pareto optimal points to a scalar. A theorem1 is presented that shows that the maximization of this scalar value constitutes the necessary and sufficient condition for the function's arguments to be maximally diverse Pareto optimal solutions of a discrete, multi-objective, optimization problem. This scalar quantity, a hypervolume based on a Lebesgue measure, is therefore the best metric to assess the quality of multi-objective optimization algorithms. Moreover, it can be used as the objective function in simulated annealing (SA) to induce convergence in probability to the Pareto optima. An efficient, polynomial-time algorithm for calculating this scalar and an analysis of its complexity is also presented. |