Existence of two weak solutions for some singular elliptic problems
Autor: | Mehdi Khodabakhshi, Abdolmohammad Aminpour, Ghasem A. Afrouzi, Armin Hadjian |
---|---|
Rok vydání: | 2015 |
Předmět: |
Algebra and Number Theory
Applied Mathematics 010102 general mathematics Mathematical analysis 01 natural sciences Critical point (mathematics) 010101 applied mathematics Computational Mathematics symbols.namesake Singular solution Bounded function Dirichlet boundary condition symbols p-Laplacian Geometry and Topology Differentiable function 0101 mathematics Analysis Mathematics |
Zdroj: | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas. 110:385-393 |
ISSN: | 1579-1505 1578-7303 |
DOI: | 10.1007/s13398-015-0239-1 |
Popis: | In this paper, we establish the existence of at least two distinct weak solutions for some singular elliptic problems involving a p-Laplace operator, subject to Dirichlet boundary conditions in a smooth bounded domain in \(\mathbb {R}^N.\) A critical point result for differentiable functionals is exploited, in order to prove that the problem admits at least two distinct non-trivial weak solutions. |
Databáze: | OpenAIRE |
Externí odkaz: |