Popis: |
Bovine babesiosis caused by Babesia bovis continues to be a significant deterrent to global livestock production. Current control methods have both biological and technical drawbacks that have stimulated research on improved methods of vaccination. This BARD project has focused on characterization of candidate Babesia bovis vaccine antigens located in the apical complex, a unique group of subcellular organelles - including rhoptries, micronemes, and spherical bodies - involved in the invation of erythrocytes. Spherical bodies and rhoptries were partially purified and their contents characterized using monoclonal antibodies. Existing and newly developed monoclonal antibodies bound to antigens in the spherical body, rhoptry, merozoite membrane, and infected erythrocyte membrane. In an initial immunization study using biologically cloned strains, it was demonstrated that strain-common epitopes are important for inducing immune protection against heterologous challenge. Rhoptry-associated antigen 1 (RAP-1) had been demonstrated previously to induce partial immune protection, fulfilled criteria of broad interstrain B and T cell epitope conservation, and thus was further characterized. The RAP-1 gene family consists of at least two gene copies, is homologous to the RAP-1 gene family in B. bigemina, and contains significant sequence similarity to other erythroparasitic protozoan candidate vaccine antigens, including the apical membrane antigen of Plasmodium falciparum. A new RAP-1 monoclonal antibody was developed that inhibits merozoite growth in vitro, demonstrating the presence of a RAP-1 neutralization sensitive domain. Based on these observations, cattle were immunized with Mo7 (Mexico) strain recombinant RAP-1 representing one of the two gene copies. All cattle responded with variable levels of serum antibodies inhibitory to heterologous Israel strain merozoite growth in vitro, and RAP-1 specific T lymphocytes that proliferated when stimulated with either homologous or heterologous native parasite antigen. Minimal protection from clinical disease was present after virulent Israel (heterologous) strain B. bovis challenge. In total, the results support the continued development of RAP-1 as a vaccine antigen, but indicate that additional information about the native structure and function of both RAP-1 gene copies, including the relationship of conserved and polymorphic sequences to B and T cell lepitopes relevant for protection, is necessary for optimization of RAP-1 as a vaccine component. |