Output Feedback Control Surface Positioning With a High-Order Sliding Mode Controller/Estimator: An Experimental Study on a Hydraulic Flight Actuation System
Autor: | Mehmet Zeki Bilgin, Ali Şener Kaya |
---|---|
Rok vydání: | 2018 |
Předmět: |
Surface (mathematics)
Output feedback 0209 industrial biotechnology Computer science Mechanical Engineering 020208 electrical & electronic engineering Control (management) Mode (statistics) Estimator 02 engineering and technology Sliding mode control Computer Science Applications 020901 industrial engineering & automation Control and Systems Engineering Control theory 0202 electrical engineering electronic engineering information engineering Actuator Instrumentation Information Systems |
Zdroj: | Journal of Dynamic Systems, Measurement, and Control. 141 |
ISSN: | 1528-9028 0022-0434 |
DOI: | 10.1115/1.4040436 |
Popis: | In this paper, an output feedback sliding mode position controller/estimator scheme is proposed to control an single input single output (SISO) system subject to bounded nonlinearities and parametric uncertainties. Various works have been published addressing the theoretical effectiveness of the third-order sliding mode control (3-SMC) in terms of chattering alleviation and controller robustness. However, the application of 3-SMC with a feedback estimator to a flight actuators has not been treated explicitly. This is due to the fact that the accurate full state estimation is required since SMCs performance can be severely degraded by measurement or estimation noise. Aerodynamic control surface actuators in air vehicles mostly employ linear position controllers to achieve guidance and stability. The main focus of the paper is to experimentally demonstrate the stability and positioning performance of a third-order SMC applied to a class of system with high relative degree and bounded parametric uncertainties. The performance of the closed-loop system is also compared with a lower level SMC and classical controller to show the effectiveness of the algorithm. Realization of the proposed algorithm from an application perspective is the main target of this paper and it demonstrates that a shorter settling time and higher control action attenuation can be achieved with the proposed strategy. |
Databáze: | OpenAIRE |
Externí odkaz: |