Approximate pexiderized Cauchy's additive type mappings
Autor: | Young Whan Lee |
---|---|
Rok vydání: | 2013 |
Předmět: | |
Zdroj: | Mathematical Inequalities & Applications. :1185-1195 |
ISSN: | 1331-4343 |
DOI: | 10.7153/mia-16-92 |
Popis: | We prove the stability of the Pexiderized Cauchy's additive functional equation with a general form; f(x+y )= g(x)+h(y)+λ(x,y) where λ(x,y) is a logarithm of a pseudo exponential function. From this result, we obtain the stability with the following form; 1 1+ φ(x,y) f(x+y) e(x,y)g(x)h(y) 1+ φ(x,y), where e(x,y) is a pseudo exponential function. It is a generalized result for the stability of the Pexiderized Cauchy's functional equation. |
Databáze: | OpenAIRE |
Externí odkaz: |