Forms and Chern Classes on Hermitian Lie Algebroids
Autor: | M. M. Rezaii, Zahra Pirbodaghi |
---|---|
Rok vydání: | 2019 |
Předmět: |
Pure mathematics
Chern class 010308 nuclear & particles physics 010102 general mathematics Holomorphic function Vector bundle 01 natural sciences Hermitian matrix Complex geometry Mathematics::K-Theory and Homology 0103 physical sciences Pharmacology (medical) Curvature form Connection form 0101 mathematics Mathematics::Symplectic Geometry Holomorphic vector bundle Mathematics |
Zdroj: | Bulletin of the Iranian Mathematical Society. 46:19-36 |
ISSN: | 1735-8515 1017-060X |
DOI: | 10.1007/s41980-019-00238-y |
Popis: | In this paper, we study Hermitian Lie algebroids and introduce the notion of Chern A-connection on Hermitian vector bundles. Then, we prove that on every holomorphic vector bundle there exists a unique Chern A-connection and find its connection form and curvature form. Also, we generalize Weitzenbock’s formula to complex Lie algebroids and prove vanishing theorem for holomorphic sections. Moreover, we extend the Chern classes in complex geometry to Lie algebroids framework. |
Databáze: | OpenAIRE |
Externí odkaz: |