The influence of South American regional climate on the simulation of the Southern Hemisphere extratropical circulation
Autor: | Claudio G. Menéndez, Magdalena Falco, Andrea F. Carril, Laurent Li |
---|---|
Rok vydání: | 2019 |
Předmět: |
Atmospheric Science
010504 meteorology & atmospheric sciences Atmospheric circulation Zonal and meridional 010502 geochemistry & geophysics 01 natural sciences Circulation (fluid dynamics) South american Middle latitudes Climatology Extratropical cyclone Cyclone Environmental science Southern Hemisphere 0105 earth and related environmental sciences |
Zdroj: | Climate Dynamics. 53:6469-6488 |
ISSN: | 1432-0894 0930-7575 |
Popis: | This paper presents new modeling evidence showing the added value of high-resolution information from South America (SA) in the simulation of the Southern Hemisphere (SH) extratropical circulation. LMDZ, a coarse-resolution atmospheric global general circulation model constitutes the main tool for this investigation. Parallel to the control simulation, a two-way nesting (TWN) simulation of LMDZ is performed with an interactive coupling to the same model, but with a higher-resolution zoom over SA. The third simulation is a perfect boundary simulation for which re-analysis information from ERA-Interim is used to nudge LMDZ, but only over SA. Results indicate that enhanced resolution over SA improves the representation of the most important processes that influence extratropical eddy activity. The local improvement is followed by a better representation of the global extratropical circulation, especially in austral summer. The regional climate enhancement over SA has positive effects on simulation of the midlatitude jet position during the austral summer by significantly reducing the bias of the mean zonal kinetic energy outside the nudged zone. On the other hand, the wintertime general circulation outside the nudged-zone shows a limited bias-reduction for the regional-driven simulations, especially in the case of the TWN system. However, improvements of the TWN system compared to the control experiment are noticed in early stages of cyclone lifecycle, as it is identified in a better simulation of transient meridional heat transport and transient kinetic energy intensity. The findings of the present study suggest, thus, that improvements in resolution over SA effectively excite the simulation of the mean atmospheric circulation in the SH. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |