Using simultaneous x-ray diffraction and velocity interferometry to determine material strength in shock-compressed diamond
Autor: | Emma McBride, T. van Driel, Siegfried Glenzer, Andrew Krygier, R. P. Drake, Michael MacDonald, Abraham Levitan, Luke Fletcher, Eduardo Granados, Dominik Kraus, Eric Galtier, Inhyuk Nam, Jan Vorberger, William Schumaker, Peihao Sun, A. J. MacKinnon, Zhou Xing, Maxence Gauthier |
---|---|
Rok vydání: | 2020 |
Předmět: |
010302 applied physics
Diffraction Materials science Physics and Astronomy (miscellaneous) Astrophysics::High Energy Astrophysical Phenomena Diamond 02 engineering and technology engineering.material 021001 nanoscience & nanotechnology Laser 01 natural sciences Molecular physics Strength of materials Linear particle accelerator law.invention Condensed Matter::Materials Science Interferometry law 0103 physical sciences X-ray crystallography engineering Density functional theory 0210 nano-technology |
Zdroj: | Applied Physics Letters. 116:234104 |
ISSN: | 1077-3118 0003-6951 |
DOI: | 10.1063/5.0013085 |
Popis: | We determine the strength of laser shock-compressed polycrystalline diamond at stresses above the Hugoniot elastic limit using a technique combining x-ray diffraction from the Linac Coherent Light Source with velocity interferometry. X-ray diffraction is used to measure lattice strains, and velocity interferometry is used to infer shock and particle velocities. These measurements, combined with density-dependent elastic constants calculated using density functional theory, enable determination of material strength above the Hugoniot elastic limit. Our results indicate that diamond retains approximately 20 GPa of strength at longitudinal stresses of 150–300 GPa under shock compression. |
Databáze: | OpenAIRE |
Externí odkaz: |