Popis: |
Self-assembly is a commonly used strategy in synthesis and fabrication. One of the most economic routes for the fabrication of large ensembles of functional nanosystem is to utilize self-assembly to assemble building blocks such as colloids, nanotubes and nanowires. However, if the functional nanostructures are to be assembled across many length scales within the integrated system, it is necessary to develop new tools for large-scale assembly of nanostructures and manipulation of individual components. Here we report a simple approach to actively control the formation of the self-assembled colloidal crystals in the two-dimensional microfluidic networks. Utilizing a combination of electrocapillary forces and evaporation induced self-assembly, it is possible to actively control the self-assembly process of the colloidal nanoparticles to form colloidal crystals inside the two-dimensional microchannel networks. Using this approach, we can not only selectively fabricate the colloidal crystals in the desired channels, but we can also build colloidal crystals with different optical properties in different channels or in the same channel. This method is not limited to the fabrication of colloidal crystals. In general, it can be configured to produce other novel functional materials using self-assembly process when it is integrated with more sophisticated microfluidic system. |