ON THE -RANK OF CLASS GROUPS OF DIRICHLET BIQUADRATIC FIELDS
Autor: | Carlo Pagano, Peter Koymans, Étienne Fouvry |
---|---|
Rok vydání: | 2020 |
Předmět: |
Class (set theory)
General Mathematics Modulo 010102 general mathematics Square-free integer 01 natural sciences Omega Prime (order theory) Dirichlet distribution Combinatorics symbols.namesake Number theory 0103 physical sciences symbols Rank (graph theory) 010307 mathematical physics 0101 mathematics Mathematics |
Zdroj: | Journal of the Institute of Mathematics of Jussieu. 21:1543-1570 |
ISSN: | 1475-3030 1474-7480 |
DOI: | 10.1017/s1474748020000651 |
Popis: | We show that for $100\%$ of the odd, square free integers $n> 0$ , the $4$ -rank of $\text {Cl}(\mathbb{Q} (i, \sqrt {n}))$ is equal to $\omega _3(n) - 1$ , where $\omega _3$ is the number of prime divisors of n that are $3$ modulo $4$ . |
Databáze: | OpenAIRE |
Externí odkaz: |