Charge neutrality and band-gap tuning of epitaxial graphene on SiC by molecular doping

Autor: Camilla Coletti, Jurgen H. Smet, C. Riedl, Dong Su Lee, Ulrich Starke, L. Patthey, Benjamin Krauss, K. von Klitzing
Rok vydání: 2010
Předmět:
Zdroj: Physical Review B. 81
ISSN: 1550-235X
1098-0121
DOI: 10.1103/physrevb.81.235401
Popis: Epitaxial graphene on SiC(0001) suffers from strong intrinsic $n$-type doping. We demonstrate that the excess negative charge can be fully compensated by noncovalently functionalizing graphene with the strong electron-acceptor tetrafluorotetracyanoquinodimethane (F4-TCNQ). Charge neutrality can be reached in monolayer graphene as shown in electron-dispersion spectra from angular-resolved photoemission spectroscopy. In bilayer graphene the band-gap that originates from the SiC/graphene interface dipole increases with increasing F4-TCNQ deposition and, as a consequence of the molecular doping, the Fermi level is shifted into the band-gap. The reduction in the charge-carrier density upon molecular deposition is quantified using electronic Fermi surfaces and Raman spectroscopy. The structural and electronic characteristics of the graphene/F4-TCNQ charge-transfer complex are investigated by x-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy. The doping effect on graphene is preserved in air and is temperature resistant up to $200\text{ }\ifmmode^\circ\else\textdegree\fi{}\text{C}$. Furthermore, graphene noncovalent functionalization with F4-TCNQ can be implemented not only via evaporation in ultrahigh vacuum but also by wet chemistry.
Databáze: OpenAIRE