Persistence and existence of stationary measures for a logistic growth model with predation
Autor: | Susana Pinheiro |
---|---|
Rok vydání: | 2016 |
Předmět: |
Statistics and Probability
education.field_of_study Applied Mathematics 010102 general mathematics Diagram Population Stationary sequence 01 natural sciences Measure (mathematics) Term (time) 010101 applied mathematics Stochastic differential equation Modeling and Simulation Econometrics Applied mathematics Uniqueness 0101 mathematics Logistic function education Mathematics |
Zdroj: | Stochastic Models. 32:513-538 |
ISSN: | 1532-4214 1532-6349 |
DOI: | 10.1080/15326349.2016.1174587 |
Popis: | We consider a stochastic logistic growth model with a predation term, and a diffusive stochastic part with a power-type coefficient. We provide criteria for the persistence of the population and for the existence and uniqueness of a stationary measure. Furthermore, we perform a detailed study of the densities of the stationary measures resorting to the forward Kolmogorov equation. We compile our results in a stochastic bifurcation diagram, drawing comparisons with the corresponding deterministic model. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |