Autor: |
Lev Birbrair, Andrei Gabrielov |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Introduction to Lipschitz Geometry of Singularities ISBN: 9783030618063 |
DOI: |
10.1007/978-3-030-61807-0_6 |
Popis: |
A link of an isolated singularity of a two-dimensional semialgebraic surface in \({\mathbb R}^4\) is a knot (or a link) in S3. Thus the ambient Lipschitz classification of surface singularities in \({\mathbb R}^4\) can be interpreted as a metric refinement of the topological classification of knots (or links) in S3. We show that, given a knot K in S3, there are infinitely many distinct ambient Lipschitz equivalence classes of outer Lipschitz equivalent singularities in \({\mathbb R}^4\) with the links topologically ambient equivalent to K. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|