Surface Singularities in $${\mathbb R}^4$$ : First Steps Towards Lipschitz Knot Theory

Autor: Lev Birbrair, Andrei Gabrielov
Rok vydání: 2020
Předmět:
Zdroj: Introduction to Lipschitz Geometry of Singularities ISBN: 9783030618063
DOI: 10.1007/978-3-030-61807-0_6
Popis: A link of an isolated singularity of a two-dimensional semialgebraic surface in \({\mathbb R}^4\) is a knot (or a link) in S3. Thus the ambient Lipschitz classification of surface singularities in \({\mathbb R}^4\) can be interpreted as a metric refinement of the topological classification of knots (or links) in S3. We show that, given a knot K in S3, there are infinitely many distinct ambient Lipschitz equivalence classes of outer Lipschitz equivalent singularities in \({\mathbb R}^4\) with the links topologically ambient equivalent to K.
Databáze: OpenAIRE