Dynamic Mode Decompositions of Phonation Onset – Comparison of Different Methods

Autor: Jan Valášek, Petr Sváček
Rok vydání: 2022
Zdroj: Topical Problems of Fluid Mechanics 2022.
Popis: Four dynamic mode decomposition (DMD) methods are used to analyze a simulation of the phonation onset carried out by in-house solver based on the nite element method. The dataset consists of several last periods of the flow-induced vibrations of vocal folds (VFs). The DMD is a data-driven and model-free method typically used for finding a low-rank representation of a high-dimensional system. In general, the DMD decomposes a given dataset to modes with mono-frequency content and associated complex eigenvalues providing the growth/decay rate that allows a favourable physical interpretation and in some cases also a short-term prediction of system behaviour. The disadvantages of the standard DMD are non-orthogonal modes and sensitivity to an increased noise level which are addressed by following DMD variants. The recursive DMD (rDMD) is an iterative DMD decomposition producing orthogonal modes. The total least-square DMD and the higher order DMD (hoDMD) are methods substantially reducing a high DMD sensitivity to noise. All methods identi ed very similar DMD modes as well as frequency spectra. Substantial difference was found in the real part of the spectra. The nal dataset reconstruction is the most accurate in the case of the recursive variant. The higher order DMD method also outperforms the standard DMD. Thus the rDMD and the hoDMD decompositions are promising to be used further for the parametrization of a VF motion.
Databáze: OpenAIRE