Potential of active excretion of ammonia in three different haline species of crabs

Autor: Dirk Weihrauch, U. Postel, D. Siebers, S. Luck-Kopp, Wilhelm Becker
Rok vydání: 1999
Předmět:
Zdroj: Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology. 169:25-37
ISSN: 1432-136X
0174-1578
Popis: Isolated perfused gills of stenohaline crabs Cancer pagurus adapted to seawater, brackish water-adapted euryhaline shore crabs Carcinus maenas and freshwater-adapted extremely euryhaline Chinese crabs Eriocheir sinensis were tested for their capacity to excrete ammonia. Gills were perfused with haemolymph-like salines and bathed with salines equal in adaptation osmolality. Applying 100 μmol · l−1 NH4Cl in the perfusion saline and concentrations of NH4Cl in the bath that were stepwise increased from 0 to 4000 μmol · l−1 allowed us to measure transbranchial fluxes of ammonia along an outwardly as well as various inwardly directed gradients. The gills of all three crab species were capable – to different extents – of active excretion of ammonia against an inwardly directed gradient. Of the three crab species, the gills of Cancer pagurus revealed the highest capacity for active excretion of ammonia, being able to excrete it from the haemolymph (100 μmol · l−1 NH+4) through the gill epithelium against ambient concentrations of up to 800 μmol · l−1, i.e. against an eightfold gradient. Carcinus maenas and E. sinensis were able to actively excrete ammonia against approximately fourfold gradients. Within the three crab species, the gills of E. sinensis exhibited the greatest capacity to resist influx at very high external concentrations of up to 4000 μmol · l−1. We consider the observed capacities for excretion of ammonia against the gradient as ecologically meaningful. These benthic crustaceans protect themselves by burying themselves in the sediment, where, in contrast to the water column, concentrations of ammonia have previously been reported that greatly increase haemolymph levels. Electrophysiological results indicate that the permeabilities of the gill epithelia are a clue to understanding the species-specific differences in active excretion of ammonia. During the invasion of brackish water and freshwater, the permeabilities of the body surfaces greatly decreased. The gills of marine Cancer pagurus exibited the greatest permeability (ca. 250 mS cm−2), thus representing practically no influx barrier for ions including NH+4. We therefore assume that C. pagurus had to develop the strongest mechanism of active excretion of ammonia to counteract influx. On the other hand, freshwater-adapted E. sinensis exhibited the lowest ion permeability (ca. 4 mS cm−2) which may reduce passive NH+4 influxes at high ambient levels.
Databáze: OpenAIRE