Infinite families of t-designs from the binomial $$x^{4}+x^{3}$$ over $$\mathrm {GF}(2^n)$$

Autor: Can Xiang, Xin Ling
Rok vydání: 2021
Předmět:
Zdroj: Applicable Algebra in Engineering, Communication and Computing. 34:411-421
ISSN: 1432-0622
0938-1279
DOI: 10.1007/s00200-021-00512-9
Popis: Combinatorial t-designs have nice applications in coding theory, finite geometries and engineering areas. t-designs can be constructed from image sets of a fixed size of some special polynomials. This paper constructs t-designs from the quadratic polynomial $$x^{4}+x^{3}$$ over $$\mathrm {GF}(2^{n})$$ and determine their parameters. We yield 2- $$\left( 2^n,3\cdot 2^{n-2},3\cdot 2^{n-2}\left( 3\cdot 2^{n-2}-1 \right) \right) $$ designs for n even and 3- $$\left( 2^n,2^{n-1},2^{n-1}\left( 2^{n-2}-1 \right) \right) $$ designs for n odd.
Databáze: OpenAIRE