Exploiting Semantic and Social Information in Recommendation Algorithms

Autor: Dominique Laurent, Dalia Sulieman, Hubert Kadima, Maria Malek
Rok vydání: 2013
Předmět:
Zdroj: Communications in Computer and Information Science ISBN: 9783642401398
ISIP
DOI: 10.1007/978-3-642-40140-4_10
Popis: In this paper we present algorithms for recommender systems. Our algorithms rely on a semantic relevance measure and a social network analysis measure to partially explore the network using depth-first search and breath-first search strategies. We apply these algorithms to a real data set and we compare them with item-based collaborative filtering and hybrid recommendation algorithms. Our experiments show that our algorithms outperform existing recommendation algorithms, while providing good precision and F-measure results.
Databáze: OpenAIRE