Polynomial versions of weak Dunford–Pettis properties in Banach lattices
Autor: | Zhongrui Shi, Qingying Bu, Yu Wang |
---|---|
Rok vydání: | 2021 |
Předmět: |
Mathematics::Functional Analysis
Pure mathematics Polynomial Property (philosophy) General Mathematics Banach lattice Mathematics::Spectral Theory Operator theory Potential theory Theoretical Computer Science symbols.namesake Tensor product Homogeneous Fourier analysis symbols Mathematics::Metric Geometry Analysis Mathematics |
Zdroj: | Positivity. 25:1685-1698 |
ISSN: | 1572-9281 1385-1292 |
DOI: | 10.1007/s11117-021-00837-2 |
Popis: | In this paper, we introduce polynomial versions of the weak Dunford–Pettis property and the weak Dunford–Pettis $$^{*}$$ property for Banach lattices. By using Fremlin projective Banach lattice tensor products, we obtain several characterizations of the weak Dunford–Pettis property and the weak Dunford–Pettis $$^{*}$$ property in terms of regular homogeneous polynomials on Banach lattices. |
Databáze: | OpenAIRE |
Externí odkaz: |