Assessment of primary energy consumption, carbon dioxide emissions, and peak electric load for a residential fuel cell using empirical natural gas and electricity use profiles
Autor: | Joshua D. Rhodes, Kazunori Nagasawa, Michael E. Webber |
---|---|
Rok vydání: | 2018 |
Předmět: |
Primary energy consumption
Electrical load business.industry 020209 energy Mechanical Engineering Environmental engineering 02 engineering and technology Building and Construction 010501 environmental sciences 01 natural sciences chemistry.chemical_compound Electricity generation Smart grid chemistry Natural gas Carbon dioxide 0202 electrical engineering electronic engineering information engineering Environmental science Electricity Electrical and Electronic Engineering business Heating degree day 0105 earth and related environmental sciences Civil and Structural Engineering |
Zdroj: | Energy and Buildings. 178:242-253 |
ISSN: | 0378-7788 |
Popis: | This analysis uses empirical data for 20 single-family homes from a smart grid demonstration project in Austin, Texas to create intra-day natural gas and electricity use profiles on one-minute intervals based on cooling and heating degree days. Combining these intra-day energy use profiles with emissions factors and a linear programming model, temporal energy use profiles were evaluated to quantify primary energy consumption, CO2 emissions, and peak electric load for a house with a residential fuel cell used as on-site power generation versus being connected to the electric grid. Results showed that natural gas use primarily peaked in the morning, while electricity use peaked in the afternoon. For fuel cell capacities of 0–3.0 kW e and efficiency of 40%, total CO2 emissions, including the fuel cell for the cooling day, were 1.7–1.9 times higher than the heating day. For a fuel cell capacity of 1.0 kW e and efficiency of 40%, peak electric load decreased during on-peak hours (14:00–20:00) for the cooling and heating days by 60% and 44%, respectively. Effects of fuel cell capacity and efficiency on total primary energy consumption and CO2 emissions showed that as the fuel cell capacity and efficiency increased, primary energy consumption and CO2 emissions were reduced from the baseline values that represent conventional homes’ patterns. These results show that the use of residential fuel cells can offer environmental benefits from reducing primary energy consumption and CO2 emissions, and grid reliability benefits by reducing peak electric load. |
Databáze: | OpenAIRE |
Externí odkaz: |