Local linear quantile regression with truncated and dependent data

Autor: Weimin Ma, Li-Min Wen, Jiang-Feng Wang, Guo-Liang Fan
Rok vydání: 2015
Předmět:
Zdroj: Statistics & Probability Letters. 96:232-240
ISSN: 0167-7152
DOI: 10.1016/j.spl.2014.09.029
Popis: In this paper, we construct a nonparametric regression quantile estimator by using the local linear fitting for left-truncated data, and establish the Bahadur-type representation and asymptotic normality of the proposed estimator when the observations form a stationary α -mixing sequence. Finite-sample performance of the estimator is investigated via simulation studies.
Databáze: OpenAIRE