Popis: |
Excitation of electron plasma wave by an intense short laser pulse is relevant to electron acceleration process in laser plasma interactions. In this work, the self-focusing of an intense cosh-Gaussian laser beam in collissionless plasma have been studied in the non-paraxial region with relativistic and ponderomotive nonlinearities. Further, the effect of self-focusing of the cosh-Gaussian laser beam on the excitation of electron plasma wave and on subsequent electron acceleration has been investigated. Analytical expressions for the beam width parameter/intensity of cosh-Gaussian laser beam and the electron plasma wave have been established and solved numerically. The energy of the accelerated electrons has also been obtained. The strong self-focusing of the cosh-Gaussian laser beam in plasmas stimulates a large amplitude electron plasma wave, which further accelerates the electrons. The well-established laser and plasma parameters have been used in numerical computation. The results have been compared with paraxial ray approximation, Gaussian profile of laser beam and only with the relativistic nonlinearity. Numerical results suggest that the focusing of the cosh-Gaussian laser beam, the amplitude of electron plasma wave, and energy gain by electrons increases in non-paraxial region, when relativistic and ponderomotive nonlinearities are simultaneously operative. In addition, it has also been observed that the electron plasma wave is driven more efficiently by a cosh-Gaussian laser beam that accelerates plasma electrons to higher energies. |