Asymptotic Expansion of the Bergman Kernel via Perturbation of the Bargmann–Fock Model

Autor: Hamid Hezari, Shoo Seto, Hang Xu, Casey Lynn Kelleher
Rok vydání: 2015
Předmět:
Zdroj: The Journal of Geometric Analysis. 26:2602-2638
ISSN: 1559-002X
1050-6926
DOI: 10.1007/s12220-015-9641-3
Popis: We give an alternate proof of the existence of the asymptotic expansion of the Bergman kernel associated with the kth tensor powers of a positive line bundle L in a \(\frac{1}{\sqrt{k}}\)-neighborhood of the diagonal using elementary methods. We use the observation that after rescaling the Kahler potential \(k\varphi \) in a \(\frac{1}{\sqrt{k}}\)-neighborhood of a given point, the potential becomes an asymptotic perturbation of the Bargmann–Fock metric. We then prove that the Bergman kernel is also an asymptotic perturbation of the Bargmann–Fock Bergman kernel.
Databáze: OpenAIRE