Sharp Estimates for the Size of Balls in the Complement of a Hypersurface

Autor: Sérgio L. Silva, Francisco Fontenele
Rok vydání: 2005
Předmět:
Zdroj: Geometriae Dedicata. 115:163-179
ISSN: 1572-9168
0046-5755
DOI: 10.1007/s10711-005-6909-y
Popis: In this paper, we make estimates for the radius of balls contained in some component of the complementary of a complete hypersurface into a space form, generalizing and improving analogous radius estimates for embedded compact hypersurfaces obtained by Blaschke, Koutroufiotis and the authors. The results are obtained using an algebraic lemma and a tangency principle related with the length of the second fundamental form. The algebraic lemma also is used to improve a result for graphs due to Hasanis–Vlachos.
Databáze: OpenAIRE