Sharp Estimates for the Size of Balls in the Complement of a Hypersurface
Autor: | Sérgio L. Silva, Francisco Fontenele |
---|---|
Rok vydání: | 2005 |
Předmět: | |
Zdroj: | Geometriae Dedicata. 115:163-179 |
ISSN: | 1572-9168 0046-5755 |
DOI: | 10.1007/s10711-005-6909-y |
Popis: | In this paper, we make estimates for the radius of balls contained in some component of the complementary of a complete hypersurface into a space form, generalizing and improving analogous radius estimates for embedded compact hypersurfaces obtained by Blaschke, Koutroufiotis and the authors. The results are obtained using an algebraic lemma and a tangency principle related with the length of the second fundamental form. The algebraic lemma also is used to improve a result for graphs due to Hasanis–Vlachos. |
Databáze: | OpenAIRE |
Externí odkaz: |