Implanting Numerous Hydrogen‐Bonding Networks in a Cu‐Porphyrin‐Based Nanosheet to Boost CH 4 Selectivity in Neutral‐Media CO 2 Electroreduction
Autor: | Shun-Li Li, Ming Liu, Yi-Rong Wang, Ya-Qian Lan, Guang-Kuo Gao, Yifa Chen, Hui-Min Ding, Yi-Lu Yang, Ru-Xin Yang |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Angewandte Chemie International Edition. 60:21952-21958 |
ISSN: | 1521-3773 1433-7851 |
DOI: | 10.1002/anie.202108388 |
Popis: | The exploration of novel systems for the electrochemical CO2 reduction reaction (CO2 RR) for the production of hydrocarbons like CH4 remains a giant challenge. Well-designed electrocatalysts with advantages like proton generation/transferring and intermediate-fixating for efficient CO2 RR are much preferred yet largely unexplored. In this work, a kind of Cu-porphyrin-based large-scale (≈1.5 μm) and ultrathin nanosheet (≈5 nm) has been successfully applied in electrochemical CO2 RR. It exhibits a superior FE CH 4 of 70 % with a high current density (-183.0 mA cm-2 ) at -1.6 V under rarely reported neutral conditions and maintains FE CH 4 >51 % over a wide potential range (-1.5 to -1.7 V) in a flow cell. The high performance can be attributed to the construction of numerous hydrogen-bonding networks through the integration of diaminotriazine with Cu-porphyrin, which is beneficial for proton migration and intermediate stabilization, as supported by DFT calculations. This work paves a new way in exploring hydrogen-bonding-based materials as efficient CO2 RR catalysts. |
Databáze: | OpenAIRE |
Externí odkaz: |