High Temperature Superfluorescence in Methyl Ammonium Lead Iodide

Autor: Gamze Findik, Melike Biliroglu, Dovletgeldi Seyitliyev, Juliana Mendes, Andrew Barrette, Hossein Ardekani, Lei Lei, Qi Dong, Franky So, Kenan Gundogdu
Rok vydání: 2020
Předmět:
DOI: 10.21203/rs.3.rs-115325/v1
Popis: Light-matter interactions can create and manipulate collective many-body phases in solids1-3, which are promising for the realization of emerging quantum applications. However, in most cases these collective quantum states are fragile, with a short decoherence and dephasing time, limiting their existence to precision tailored structures under delicate conditions such as cryogenic temperatures and/or high magnetic fields. In this work, we discovered that the archetypal hybrid perovskite, MAPbI3 thin films, exhibit such a collective coherent quantum many-body phase, namely superfluorescence, at 78 K and above. Pulsed laser excitation first creates a population of high energy electron-hole pairs, which quickly relax to lower energy domains and then develop a macroscopic quantum coherence through spontaneous synchronization. The excitation fluence dependence of the spectroscopic features and the population kinetics in such films unambiguously confirm all the well-known characteristics of superfluorescence. These results show that the creation and manipulation of collective coherent states in hybrid perovskites can be used as the basic building blocks for quantum applications4,5.
Databáze: OpenAIRE