DUCATI
Autor: | Eiman Ebrahimi, Sam Duncan, Aamer Jaleel |
---|---|
Rok vydání: | 2019 |
Předmět: |
010302 applied physics
Hardware_MEMORYSTRUCTURES Computer science Translation lookaside buffer 02 engineering and technology Parallel computing High Bandwidth Memory 01 natural sciences 020202 computer hardware & architecture Physical address Hardware and Architecture 0103 physical sciences Virtual memory 0202 electrical engineering electronic engineering information engineering Systems design Cache Page table Software Dram Information Systems |
Zdroj: | ACM Transactions on Architecture and Code Optimization. 16:1-24 |
ISSN: | 1544-3973 1544-3566 |
Popis: | Conventional on-chip TLB hierarchies are unable to fully cover the growing application working-set sizes. To make things worse, Last-Level TLB (LLT) misses require multiple accesses to the page table even with the use of page walk caches. Consequently, LLT misses incur long address translation latency and hurt performance. This article proposes two low-overhead hardware mechanisms for reducing the frequency and penalty of on-die LLT misses. The first, Unified CAche and TLB (UCAT) , enables the conventional on-die Last-Level Cache to store cache lines and TLB entries in a single unified structure and increases on-die TLB capacity significantly. The second, DRAM-TLB , memoizes virtual to physical address translations in DRAM and reduces LLT miss penalty when UCAT is unable to fully cover total application working-set. DRAM-TLB serves as the next larger level in the TLB hierarchy that significantly increases TLB coverage relative to on-chip TLBs. The combination of these two mechanisms, DUCATI , is an address translation architecture that improves GPU performance by 81%; (up to 4.5×) while requiring minimal changes to the existing system design. We show that DUCATI is within 20%, 5%, and 2% the performance of a perfect LLT system when using 4KB, 64KB, and 2MB pages, respectively. |
Databáze: | OpenAIRE |
Externí odkaz: |