An Intuitive Geometric Approach to the Gauss Markov Theorem
Autor: | Lucas Monteiro Chaves, Devanil Jaques de Souza, Leandro da Silva Pereira |
---|---|
Rok vydání: | 2017 |
Předmět: |
Statistics and Probability
Mathematical optimization General Mathematics 05 social sciences Orthographic projection Divergence theorem Mathematical proof 01 natural sciences Linear subspace 050105 experimental psychology Gauss–Markov theorem Algebra 010104 statistics & probability Simple (abstract algebra) 0501 psychology and cognitive sciences Point (geometry) 0101 mathematics Statistics Probability and Uncertainty Mathematics |
Zdroj: | The American Statistician. 71:67-70 |
ISSN: | 1537-2731 0003-1305 |
DOI: | 10.1080/00031305.2016.1209127 |
Popis: | Algebraic proofs of Gauss–Markov theorem are very disappointing from an intuitive point of view. An alternative is to use geometry that emphasizes the essential statistical ideas behind the result. This article presents a truly geometrical intuitive approach to the theorem, based only in simple geometrical concepts, like linear subspaces and orthogonal projections. |
Databáze: | OpenAIRE |
Externí odkaz: |