Well-posedness and Continuity Properties of a generalized Degasperis-Procesi equation in $B^1_{\infty,1}$
Autor: | Shaohui Gui, Min Li, Shiping Zhong |
---|---|
Rok vydání: | 2022 |
DOI: | 10.22541/au.165388861.14298485/v1 |
Popis: | In this paper, we obtain the local-in-time existence and uniqueness of solution to the generalized Degasperis-Procesi equation in $B^1_{\infty,1}(\mathbb{R})$. Moreover, we prove that the data-to-solution of this equation is continuous but not uniformly continuous in $B^1_{\infty,1}(\mathbb{R})$ |
Databáze: | OpenAIRE |
Externí odkaz: |