Eigenvalues of Block Matrices Arising from Problems in Fluid Mechanics
Autor: | K. A. Cliffe, T. J. Garratt, Alastair Spence |
---|---|
Rok vydání: | 1994 |
Předmět: |
Inverse iteration
Mathematical analysis MathematicsofComputing_NUMERICALANALYSIS Fluid mechanics Mathematics::Spectral Theory Finite element method Arnoldi iteration Incompressible flow ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION Divide-and-conquer eigenvalue algorithm Analysis Eigenvalues and eigenvectors Eigenvalue perturbation Mathematics |
Zdroj: | SIAM Journal on Matrix Analysis and Applications. 15:1310-1318 |
ISSN: | 1095-7162 0895-4798 |
DOI: | 10.1137/s0895479892233230 |
Popis: | Block matrices with a special structure arise from mixed finite element discretizations of incompressible flow problems. This paper is concerned with an analysis of the eigenvalue problem for such matrices and the derivation of two shifted eigenvalue problems that are more suited to numerical solution by iterative algorithms like simultaneous iteration and Arnoldi's method. The application of the shifted eigenvalue problems to the determination of the eigenvalue of smallest real part is discussed and a numerical example arising from a stability analysis of double-diffusive convection is described. |
Databáze: | OpenAIRE |
Externí odkaz: |