Symmetric and generating functions of generalized (p,q)-numbers

Autor: Ali Boussayoud, Nabiha Saba, Abdelhamid Abderrezzak
Rok vydání: 2021
Předmět:
Zdroj: Kuwait Journal of Science. 48
ISSN: 2307-4116
2307-4108
DOI: 10.48129/kjs.v48i4.10074
Popis: In this paper, we will firstly define a new generalization of numbers (p, q) and then derive the appropriate Binet's formula and generating functions concerning (p,q)-Fibonacci numbers, (p,q)- Lucas numbers, (p,q)-Pell numbers, (p,q)-Pell Lucas numbers, (p,q)-Jacobsthal numbers and (p,q)-Jacobsthal Lucas numbers. Also, some useful generating functions are provided for the products of (p,q)-numbers with bivariate complex Fibonacci and Lucas polynomials.
Databáze: OpenAIRE