Symmetric and generating functions of generalized (p,q)-numbers
Autor: | Ali Boussayoud, Nabiha Saba, Abdelhamid Abderrezzak |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Kuwait Journal of Science. 48 |
ISSN: | 2307-4116 2307-4108 |
DOI: | 10.48129/kjs.v48i4.10074 |
Popis: | In this paper, we will firstly define a new generalization of numbers (p, q) and then derive the appropriate Binet's formula and generating functions concerning (p,q)-Fibonacci numbers, (p,q)- Lucas numbers, (p,q)-Pell numbers, (p,q)-Pell Lucas numbers, (p,q)-Jacobsthal numbers and (p,q)-Jacobsthal Lucas numbers. Also, some useful generating functions are provided for the products of (p,q)-numbers with bivariate complex Fibonacci and Lucas polynomials. |
Databáze: | OpenAIRE |
Externí odkaz: |