Algebraic optimization degree
Autor: | Jose Israel Rodriguez, Marc Härkönen, Benjamin Hollering, Fatemeh Tarashi Kashani |
---|---|
Rok vydání: | 2020 |
Předmět: |
Algebraic optimization
Optimization problem Degree (graph theory) Computer science Maximum likelihood 010102 general mathematics Structure (category theory) 0102 computer and information sciences General Medicine 01 natural sciences Algebra Euclidean distance Tree (data structure) 010201 computation theory & mathematics 0101 mathematics Algebraic number |
Zdroj: | ACM Communications in Computer Algebra. 54:44-48 |
ISSN: | 1932-2240 |
DOI: | 10.1145/3427218.3427222 |
Popis: | The Macaulay2 [5] package AlgebraicOptimization implements methods for determining the algebraic degree of an optimization problem. We describe the structure of an algebraic optimization problem and explain how the methods in this package may be used to determine the respective degrees. Special features include determining Euclidean distance degrees and maximum likelihood degrees. To our knowledge, this is the first comprehensive software package combining different methods in algebraic optimization. The package is available at https://github.com/Macaulay2/Workshop-2020-Cleveland/tree/ISSAC-AlgOpt/alg-stat/AlgebraicOptimization. |
Databáze: | OpenAIRE |
Externí odkaz: |