Autor: |
Ana M. Herrera-Rodríguez, Anil Kumar Dasanna, Csaba Daday, Eduardo R. Cruz-Chú, Camilo Aponte-Santamaría, Ulrich S. Schwarz, Frauke Gräter |
Rok vydání: |
2022 |
DOI: |
10.1101/2022.10.25.513683 |
Popis: |
Hydrodynamic flow in the spider duct induces conformational changes in dragline spider silk proteins (spidroins) and drives their assembly, but the underlying physical mechanisms are still elusive. Here we address this challenging multiscale problem with a complementary strategy of atomistic and coarse-grained Molecular Dynamics (MD) simulations with uniform flow. The conformational changes at the molecular level were analyzed for single tethered spider silk peptides. Uniform flow leads to coiled-to-stretch transitions and pushes alanine residues intoβ-sheet and Poly-Proline II (PPII) conformations. Coarse-grained simulations of the assembly process of multiple semi-flexible block copolymers using multi-particle collision dynamics reveal that the spidroins aggregate faster but into low-order assemblies when they are less extended. At medium-to-large peptide extensions (50%-80%), assembly slows down and becomes reversible with frequent association and dissociation events, while spidroin alignment increases and alanine repeats form ordered regions. Our work highlights the role of flow in guiding silk self-assembly into tough fibers by enhancing alignment and kinetic reversibility, a mechanism likely relevant for other proteins whose function depends on hydrodynamic flow. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|