The Wiener index of unicyclic graphs given number of pendant vertices or cut vertices
Autor: | Qi-long Wang, Yan Lin, Shang-wang Tan |
---|---|
Rok vydání: | 2016 |
Předmět: |
Discrete mathematics
Mathematics::Combinatorics Applied Mathematics 010102 general mathematics Unicyclic graphs Neighbourhood (graph theory) 0102 computer and information sciences Wiener index 01 natural sciences Computer Science::Robotics Combinatorics Computational Mathematics 010201 computation theory & mathematics Chordal graph Independent set Topological index 0101 mathematics Connectivity Mathematics |
Zdroj: | Journal of Applied Mathematics and Computing. 55:1-24 |
ISSN: | 1865-2085 1598-5865 |
DOI: | 10.1007/s12190-016-1022-y |
Popis: | The Wiener index is the sum of distances between all pairs of distinct vertices in a connected graph, which is the oldest topological index related to molecular branching. In this article, we give a condition to determine the graphs having the smallest Wiener index among all unicyclic graphs given number of pendant vertices, and we also determine the graphs having the smallest Wiener index among all unicyclic graphs given number of cut vertices. |
Databáze: | OpenAIRE |
Externí odkaz: |