New framework for interference and energy analysis of soft frequency reuse in 5G networks
Autor: | Osbert Tarlumun Asaka, Achonu Adejo, C. O. Alenoghena, Habeeb Bello Salau |
---|---|
Rok vydání: | 2020 |
Předmět: |
Control and Optimization
Computer Networks and Communications Computer science Bandwidth (signal processing) Spectral efficiency Interference (wave propagation) Base station Hardware and Architecture Control and Systems Engineering Computer Science (miscellaneous) Cellular network Electronic engineering Network performance Enhanced Data Rates for GSM Evolution Electrical and Electronic Engineering Instrumentation 5G Information Systems |
Zdroj: | Bulletin of Electrical Engineering and Informatics. 9:1941-1949 |
ISSN: | 2302-9285 2089-3191 |
DOI: | 10.11591/eei.v9i5.2536 |
Popis: | Cellular networks are expanding massively due to high data requirements from mobile devices. This has motivated base station densification as an essential requirement for the 5G network. The implication is obvious benefits in enhanced system capacity, but also increased challenges in terms of interference. One important interference management technique which has been widely adopted in cellular networks is frequency reuse. In this article, an analysis is presented based on network interference and energy expended by base stations in downlink communication when Soft frequency reuse (SFR) is deployed. A framework is presented that captures the bandwidth overlaps in SFR across base station assignments, computes the interference probabilities arising and derives new performance equations which are verified using simulations. Results show an improvement of over previous SFR implementations that do not consider the interference probabilities. Thus, a more in-depth and accurate modelling of SFR in 5G networks is achieved. Furthermore, the downlink power allocation is investigated as against other parameters like the center ratio and edge bandwidth. The result shows that signal-to-interference-noise ratio (SINR) and spectral efficiency give different performance under energy consideration. A framework is developed on how to tune a base station to achieve desired network performance in user SINR or cell spectral efficiency depending on the operator’s preference. |
Databáze: | OpenAIRE |
Externí odkaz: |