Existence of Running Solutions in a Relativistic Tricomi’s Equation Using Perturbation Theory
Autor: | Z. Daniel Cortés, G. Alexander Gutierrez |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Mediterranean Journal of Mathematics. 20 |
ISSN: | 1660-5454 1660-5446 |
DOI: | 10.1007/s00009-023-02274-9 |
Popis: | We use perturbation methods to establish the existence of a second kind periodic solution (running solution) of a nonlinear Tricomi’s equation type under relativistic effects. First, we estimate conditions for the existence of either an equilibrium point or a second-kind periodic solution through the average method, where we assumed the nonlinear part as a positive perturbation. Then, we use the Melnikov function to estimate conditions for the existence of running solutions, considering the persistence of the homoclinic orbits associated with the conservative equation. |
Databáze: | OpenAIRE |
Externí odkaz: |