Localization of the Stem Rust Resistance Gene Pg2 to Linkage Group Mrg20 in Cultivated Oat (Avena sativa)

Autor: Aaron D. Beattie, Aida Z. Kebede, Wubishet A. Bekele, Nicholas A. Tinker, Curt A. McCartney, Jennifer Mitchell Fetch, Shiaoman Chao, Thomas Fetch
Rok vydání: 2020
Předmět:
Zdroj: Phytopathology®. 110:1721-1726
ISSN: 1943-7684
0031-949X
Popis: Stem rust is an important disease of cultivated oat (Avena sativa) caused by Puccinia graminis f. sp. avenae. In North America, host resistance is the primary strategy to control this disease and is conferred by a relatively small number of resistance genes. Pg2 is a widely deployed stem rust resistance gene that originates from cultivated oat. Oat breeders wish to develop cultivars with multiple Pg genes to slow the breakdown of single gene resistance, and often require DNA markers suited for marker-assisted selection. Our objectives were to (i) construct high density linkage maps for a major oat stem rust resistance gene using three biparental mapping populations, (ii) develop Kompetitive allele-specific PCR (KASP) assays for Pg2-linked single-nucleotide polymorphisms (SNPs), and (iii) test the prediction accuracy of those markers with a diverse panel of spring oat lines and cultivars. Genotyping-by-sequencing SNP markers linked to Pg2 were identified in an AC Morgan/CDC Morrison recombinant inbred line (RIL) population. Pg2-linked SNPs were then analyzed in an AC Morgan/RL815 F2 population and an AC Morgan/CDC Dancer RIL population. Linkage analysis identified a common location for Pg2 in all three populations on linkage group Mrg20 of the oat consensus genetic map. The most predictive markers were identified and converted to KASP assays for use in oat breeding programs. When used in combination, the KASP assays for the SNP loci avgbs2_126549.1.46 and avgbs_cluster_23819.1.27 were highly predictive of Pg2 status in panel of 54 oat breeding lines and cultivars.
Databáze: OpenAIRE