Assessing the effects of nanoparticle type and concentration on the stability of CO 2 foams and the performance in enhanced oil recovery
Autor: | Ali Esfandyari Bayat, Kourosh Rajaei, Radzuan Junin |
---|---|
Rok vydání: | 2016 |
Předmět: |
Copper oxide
Chromatography Materials science Oxide Aqueous two-phase system Nanoparticle 02 engineering and technology 010402 general chemistry 021001 nanoscience & nanotechnology 01 natural sciences 0104 chemical sciences chemistry.chemical_compound Colloid and Surface Chemistry chemistry Chemical engineering Titanium dioxide Aluminium oxide Enhanced oil recovery 0210 nano-technology Porous medium |
Zdroj: | Colloids and Surfaces A: Physicochemical and Engineering Aspects. 511:222-231 |
ISSN: | 0927-7757 |
DOI: | 10.1016/j.colsurfa.2016.09.083 |
Popis: | Utilizing nanoparticles (NPs) for stabilizing CO 2 -foams has recently become an interesting subject among petroleum engineers. It has been proven that silica (SiO 2 ) NP is a good agent for stabilizing CO 2 -foams. Investigating the role of other types of NPs is ongoing and this research attempted to determine and compare the effects of three hydrophilic metal oxide NPs, namely aluminium oxide (Al 2 O 3 ), titanium dioxide (TiO 2 ), copper oxide (CuO) as well as the effect of SiO 2 on the stability of CO 2 -foams. For this aim, the listed NPs in concentrations from 0.002 to 0.1 wt% were dispersed in de-ionized water to make suspensions. These suspensions were utilized in a chromatography column to produce foam. The stability of the generated NPs-CO 2 -foams was determined by measuring the half-life time. The results revealed that the highest stability of NPs-CO 2 -foams was reached at an optimum concentration of 0.008 wt% for all NP types. Moreover, SiO 2 , Al 2 O 3 , TiO 2 , and CuO NPs-CO 2 foams half-life times were obtained 28.1, 24.6, 20.1, and 17.9 min, respectively. In addition, the applicability of generated NPs-CO 2 foams on oil displacement through quartz sand porous media was determined. The amounts of oil recoveries via SiO 2 , Al 2 O 3 , TiO 2 , and CuO NPs-CO 2 foams achieved were 71.7%, 65.7%, 58.2%, and 57.3% respectively. Overall, it was found that stability of a NP-CO 2 -foam is strongly dependent on NP type and concentration, and NP stability against deposition in aqueous phase. Based on the findings, more oil recoveries can be achieved by more stable NP-CO 2 foams. |
Databáze: | OpenAIRE |
Externí odkaz: |
načítá se...