Toward an internal gravity wave spectrum in global ocean models

Autor: Eric Kunze, Malte Müller, Alan J. Wallcraft, Luis Zamudio, Jay F. Shriver, Robert B. Scott, James G. Richman, Brian K. Arbic
Rok vydání: 2015
Předmět:
Zdroj: Geophysical Research Letters. 42:3474-3481
ISSN: 0094-8276
DOI: 10.1002/2015gl063365
Popis: High-resolution global ocean models forced by atmospheric fields and tides are beginning to display realistic internal gravity wave spectra, especially as model resolution increases. This paper examines internal waves in global simulations with 0.08 Degrees and 0.04 Degrees (approximately 8 and 4 km) horizontal resolutions, respectively. Frequency spectra of internal wave horizontal kinetic energy in the North Pacific lie closer to observations in the 0.04 Degrees simulation than in the 0.08 Degrees simulation. The horizontal wave number and frequency (K- omega) kinetic energy spectra contain peaks in the semidiurnal tidal band and near-inertial band, along with a broadband frequency continuum aligned along the linear dispersion relations of low-vertical-mode internal waves. Spectral kinetic energy transfers describe the rate at which nonlinear mechanisms remove or supply kinetic energy in specific K-omega ranges. Energy is transferred out of low-mode inertial and semidiurnal internal waves into a broad continuum of higher-frequency and higher-wave number internal waves.
Databáze: OpenAIRE