On the $${\mathcal {A}}$$ A -equivalence of quasi-ordinary parameterizations
Autor: | M. E. Hernandes, N. M. P. Panek |
---|---|
Rok vydání: | 2018 |
Předmět: | |
Zdroj: | Revista Matemática Complutense. 32:255-272 |
ISSN: | 1988-2807 1139-1138 |
DOI: | 10.1007/s13163-018-0276-3 |
Popis: | We study the analytic equivalence of quasi-ordinary hypersurfaces in $${\mathbb {C}}^{r+1}$$ by means of its normalized quasi-ordinary parameterization. In this context, two quasi-ordinary hypersurfaces are analytic equivalent if and only if their normalized quasi-ordinary parameterizations are $${\mathcal {A}}$$ -equivalent. We introduce the set $$\Lambda _{H}^{\mathcal {D}}\subset {\mathbb {N}}^{r}$$ associated to Kahler r-forms that generalizes an important analytic invariant of plane branches and allows us to identify terms in a normalized quasi-ordinary parameterization that can be eliminable by an element of $${\mathcal {A}}$$ -group. |
Databáze: | OpenAIRE |
Externí odkaz: |