Symmetric and Skew-Symmetric {0,±1}-Matrices with Large Determinants
Autor: | Sho Suda, Gary R. W. Greaves |
---|---|
Rok vydání: | 2017 |
Předmět: |
Optimal design
Conjecture 0211 other engineering and technologies Block matrix 021107 urban & regional planning 0102 computer and information sciences 02 engineering and technology Conference matrix 01 natural sciences Spectrum (topology) Combinatorics 010201 computation theory & mathematics Discrete Mathematics and Combinatorics Skew-symmetric matrix Tournament Mathematics |
Zdroj: | Journal of Combinatorial Designs. 25:507-522 |
ISSN: | 1063-8539 |
DOI: | 10.1002/jcd.21567 |
Popis: | We show that the existence of {±1}-matrices having largest possible determinant is equivalent to the existence of certain tournament matrices. In particular, we prove a recent conjecture of Armario. We also show that large submatrices of conference matrices are determined by their spectrum. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |