Forces driving transposable element load variation during Arabidopsis range expansion

Autor: Juan Jiang, Yong-Chao Xu, Zhi-Qin Zhang, Jia-Fu Chen, Xiao-Min Niu, Xing-Hui Hou, Xin-Tong Li, Li Wang, Yong Zhang, Song Ge, Ya-Long Guo
Rok vydání: 2022
DOI: 10.1101/2022.12.28.522087
Popis: Genetic load refers to the accumulated and potentially life-threatening deleterious mutations in populations. Understanding the mechanisms underlying genetic load variation of transposable elements (TEs), one major large-effect mutations, during range expansion is an intriguing question in biology. Here, we used 1,115 globally natural accessions ofArabidopsis thaliana, to study the driving forces of TE load variation during its range expansion. The TE load increased with range expansion, especially in the recently established Yangtze River basin population. The effective population size explained 62.0% of the variance in TE load, and high transposition rate and positive selection or hitch-hiking effect contributed to the accumulation of TEs in the expanded populations. We genetically mapped the candidate causal genes or TEs and revealed the genetic architecture of TE load. Overall, this study reveals the variation in the genetic load of TEs during Arabidopsis expansion and highlights the causes of TE load variation.
Databáze: OpenAIRE