Popis: |
The obvious advantages of rubber-reinforced caterpillars over tracks of other types make them indispensable for traction and transport vehicles for various purposes. Among other things, such caterpillars are distinguished by the possibility of their installation on the machine in place of metal caterpillars without a significant alteration of the design of chassis. Nevertheless, together with the replacement of the metal caterpillar with rubber reinforced in practice, it is also necessary to replace the existing driving wheel with a specially designed for rubber-reinforced caterpillar. This happens due to the fundamental differences in caterpillar designs and the features of their work. Until recently, there was no unified engineering method for designing the engagement of the driving wheel with the rubber-reinforced caterpillar. In one of the previous works, the authors developed a technique that takes into account the features of rubber-reinforced caterpillars. This article describes the experimental testing of this technique on the example of a specific machine - self-propelled tracked sprayer for agricultural purposes. Designed in accordance with the developed technique, prototypes of driving wheels in the self-propelled caterpillar sprayer passed a complex of factory tests, including static and dynamic phases. At the static phase of the tests, the input and output of the teeth of the drive wheels were checked from engagement during the assembly of the drive system of the chassis. During the dynamic phase, the reliability of the engagement has been checked at various driving regimes and loads of the self-propelled caterpillar sprayer. In addition, a study was made of the engagement in dynamics with the hung side of the chassis. Experimental studies have confirmed the reliability of the driving wheel samples, the reliability and adequacy of the developed methodology. The recommendations for further investigation of the pin gearing and refinement of the design methodology are given in the paper, including the creation of specialized bench equipment. |