Minimum Number of Edges of Polytopes with $2d+2$ Vertices

Autor: Guillermo Pineda-Villavicencio, Julien Ugon, David Yost
Rok vydání: 2022
Předmět:
Zdroj: The Electronic Journal of Combinatorics. 29
ISSN: 1077-8926
DOI: 10.37236/10374
Popis: We define two $d$-polytopes, both with $2d+2$ vertices and $(d+3)(d-1)$ edges, which reduce to the cube and the 5-wedge in dimension three. We show that they are the only minimisers of the number of edges, amongst all $d$-polytopes with $2d+2$ vertices, when $d=6$ or $d\ge8$. We also characterise the minimising polytopes for $d=4, 5$ or 7, where four sporadic examples arise.
Databáze: OpenAIRE