Pullback attractors and invariant measures for discrete Klein-Gordon-Schrödinger equations
Autor: | Caidi Zhao, Gang Xue, Grzegorz Łukaszewicz |
---|---|
Rok vydání: | 2018 |
Předmět: |
Pure mathematics
Computer Science::Information Retrieval Applied Mathematics 010102 general mathematics Hilbert space Pullback attractor Invariant (physics) System of linear equations 01 natural sciences Schrödinger equation 010101 applied mathematics symbols.namesake Attractor symbols Discrete Mathematics and Combinatorics 0101 mathematics Klein–Gordon equation Mathematics Probability measure |
Zdroj: | Discrete & Continuous Dynamical Systems - B. 23:4021-4044 |
ISSN: | 1553-524X |
DOI: | 10.3934/dcdsb.2018122 |
Popis: | In this article, we first provide a sufficient and necessary condition for the existence of a pullback- \begin{document}$ {\mathcal D} $\end{document} attractor for the process defined on a Hilbert space of infinite sequences. As an application, we investigate the non-autonomous discrete Klein-Gordon-Schrodinger system of equations, prove the existence of the pullback- \begin{document}$ {\mathcal D} $\end{document} attractor and then the existence of a unique family of invariant Borel probability measures associated with the considered system. |
Databáze: | OpenAIRE |
Externí odkaz: |