Pullback attractors and invariant measures for discrete Klein-Gordon-Schrödinger equations

Autor: Caidi Zhao, Gang Xue, Grzegorz Łukaszewicz
Rok vydání: 2018
Předmět:
Zdroj: Discrete & Continuous Dynamical Systems - B. 23:4021-4044
ISSN: 1553-524X
DOI: 10.3934/dcdsb.2018122
Popis: In this article, we first provide a sufficient and necessary condition for the existence of a pullback- \begin{document}$ {\mathcal D} $\end{document} attractor for the process defined on a Hilbert space of infinite sequences. As an application, we investigate the non-autonomous discrete Klein-Gordon-Schrodinger system of equations, prove the existence of the pullback- \begin{document}$ {\mathcal D} $\end{document} attractor and then the existence of a unique family of invariant Borel probability measures associated with the considered system.
Databáze: OpenAIRE